37 research outputs found

    Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism

    Get PDF
    There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans

    Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification

    Get PDF
    Changes in cardiac substrate utilisation leading to altered energy metabolism may underlie the development of diabetic cardiomyopathy. We studied cardiomyocyte substrate uptake and utilisation and the role of the fatty acid translocase CD36 in relation to in vivo cardiac function in rats fed a high-fat diet (HFD).Rats were exposed to an HFD or a low-fat diet (LFD). In vivo cardiac function was monitored by echocardiography. Substrate uptake and utilisation were determined in isolated cardiomyocytes.Feeding an HFD for 8 weeks induced left ventricular dilation in the systolic phase and decreased fractional shortening and the ejection fraction. Insulin-stimulated glucose uptake and proline-rich Akt substrate 40 phosphorylation were 41% (p <0.001) and 45% (p <0.05) lower, respectively, in cardiomyocytes from rats on the HFD. However, long-chain fatty acid (LCFA) uptake was 1.4-fold increased (p <0.001) and LCFA esterification into triacylglycerols and phospholipids was increased 1.4- and 1.5-fold, respectively (both p <0.05), in cardiomyocytes from HFD compared with LFD hearts. In the presence of the CD36 inhibitor sulfo-N-succinimidyloleate, LCFA uptake and esterification were similar in LFD and HFD cardiomyocytes. In HFD hearts CD36 was relocated to the sarcolemma, and basal phosphorylation of a mediator of CD36-trafficking, i.e. protein kinase B (PKB/Akt), was increased.Feeding rats an HFD induced cardiac contractile dysfunction, which was accompanied by the relocation of CD36 to the sarcolemma, and elevated basal levels of phosphorylated PKB/Akt. The permanent presence of CD36 at the sarcolemma resulted in enhanced rates of LCFA uptake and myocardial triacylglycerol accumulation, and may contribute to the development of insulin resistance and diabetic cardiomyopathy

    Changes in Cardiac Substrate Transporters and Metabolic Proteins Mirror the Metabolic Shift in Patients with Aortic Stenosis

    Get PDF
    In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart

    Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes

    Get PDF
    Upon stimulation of insulin signalling or contraction-induced AMP-activated protein kinase (AMPK) activation, the glucose transporter GLUT4 and the long-chain fatty acid (LCFA) transporter CD36 similarly translocate from intracellular compartments to the plasma membrane of cardiomyocytes to increase uptake of glucose and LCFA, respectively. This similarity in regulation of GLUT4 traffic and CD36 traffic suggests that the same families of trafficking proteins, including vesicle-associated membrane proteins (VAMPs), are involved in both processes. While several VAMPs have been implicated in GLUT4 traffic, nothing is known about the putative function of VAMPs in CD36 traffic. Therefore, we compared the involvement of the myocardially produced VAMP isoforms in insulin- or contraction-induced GLUT4 and CD36 translocation. Five VAMP isoforms were silenced in HL-1 cardiomyocytes. The cells were treated with insulin or the contraction-like AMPK activator oligomycin or were electrically stimulated to contract. Subsequently, GLUT4 and CD36 translocation as well as substrate uptake were measured. Three VAMPs were demonstrated to be necessary for both GLUT4 and CD36 translocation, either specifically in insulin-treated cells (VAMP2, VAMP5) or in oligomycin/contraction-treated cells (VAMP3). In addition, there are VAMPs specifically involved in either GLUT4 traffic (VAMP7 mediates basal GLUT4 retention) or CD36 traffic (VAMP4 mediates insulin- and oligomycin/contraction-induced CD36 translocation). The involvement of distinct VAMP isoforms in both GLUT4 and CD36 translocation indicates that CD36 translocation, just like GLUT4 translocation, is a vesicle-mediated process dependent on soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. The ability of other VAMPs to discriminate between GLUT4 and CD36 translocation allows the notion that myocardial substrate preference can be modulated by these VAMPs

    Link between Intestinal CD36 Ligand Binding and Satiety Induced by a High Protein Diet in Mice

    Get PDF
    CD36 is a ubiquitous membrane glycoprotein that binds long-chain fatty acids. The presence of a functional CD36 is required for the induction of satiety by a lipid load and its role as a lipid receptor driving cellular signal has recently been demonstrated. Our project aimed to further explore the role of intestinal CD36 in the regulation of food intake. Duodenal infusions of vehicle or sulfo-N-succinimidyl-oleate (SSO) was performed prior to acute infusions of saline or Intralipid (IL) in mice. Infusion of minute quantities of IL induced a decrease in food intake (FI) compared to saline. Infusion of SSO had the same effect but no additive inhibitory effect was observed in presence of IL. No IL- or SSO-mediated satiety occurred in CD36-null mice. To determine whether the CD36-mediated hypophagic effect of lipids was maintained in animals fed a satietogen diet, mice were subjected to a High-Protein diet (HPD). Concomitantly with the satiety effect, a rise in intestinal CD36 gene expression was observed. No satiety effect occurred in CD36-null mice. HPD-fed WT mice showed a diminished FI compared to control mice, after saline duodenal infusion. But there was no further decrease after lipid infusion. The lipid-induced decrease in FI observed on control mice was accompanied by a rise in jejunal oleylethanolamide (OEA). Its level was higher in HPD-fed mice than in controls after saline infusion and was not changed by lipids. Overall, we demonstrate that lipid binding to intestinal CD36 is sufficient to produce a satiety effect. Moreover, it could participate in the satiety effect induced by HPD. Intestine can modulate FI by several mechanisms including an increase in OEA production and CD36 gene expression. Furthermore, intestine of mice adapted to HPD have a diminished capacity to modulate their food intake in response to dietary lipids

    Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies

    Get PDF
    The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise, which is only sustainable if it is accepted and adopted by the wider nutrition and health research community as an open source, pre-competitive and publicly available resource where many partners both can contribute and profit from its developments. We introduce the Nutrigenomics Organisation (NuGO, http://www.nugo.org) as a membership association responsible for establishing and curating the dbNP. Within NuGO, all efforts related to dbNP (i.e. usage, coordination, integration, facilitation and maintenance) will be directed towards a sustainable and federated infrastructure

    Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients

    Get PDF
    BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation

    Acute Regulation of Cardiac Metabolism by the Hexosamine Biosynthesis Pathway and Protein O-GlcNAcylation

    Get PDF
    OBJECTIVE: The hexosamine biosynthesis pathway (HBP) flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc) levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization. METHODS: Isolated rat hearts were perfused with glucosamine (0-10 mM) to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by (13)C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36. RESULTS: Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation. CONCLUSION/INTERPRETATION: These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism

    Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes

    Get PDF
    Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy
    corecore